Press ESC to close

Beyond the Hype: What are Agents, and why they Still Need Seatbelts

TL;DR
AI agents have rocketed from weekend hacks to production workloads in under a year. The same glue that makes them wildly flexible—universal connectors like MCP, plain‑language manifests, and autonomous decision loops—also unlocks brand‑new attack paths. Before you go all in, bake in least privilege, deep observability, and a risk framework that evolves at the same pace as the tech.


Why Are We Talking About AI Agents Now?

Last spring, “AI agent” was a buzzword mostly confined to GitHub repos and Friday hack‑a‑thons. Twelve months later it’s on enterprise roadmaps and centre‑stage in every SaaS keynote.

What exactly is an AI agent?

  1. LLM at the core—memory + goals wrapped around it.
    The language model handles reasoning. A planning loop (decide → act → observe → decide…) plus short‑term memory turns that cognition into purposeful action.
  2. Tool‑augmented, not tool‑agnostic.
    Agents execute actions through tools—APIs, RPA bots, SQL queries, shell commands. Picture an intern who already knows every keyboard shortcut and never gets tired.
  3. Autonomous‑ish.
    Modern agents respect guard‑rails—task scopes, timeouts, approval gates—but they’ve evolved from one‑shot prompts to workflows that can run for minutes or hours.

An example MCP flow

sequenceDiagram
    participant ToolService as "Tool Service"
    participant AgentHost  as "Agent Host"
    participant LLM
    participant ExecBroker as "Execution Broker"

    ToolService ->> AgentHost: 1. Publish capability manifest
    AgentHost   ->> LLM: 2. Expose functions
    LLM         ->> AgentHost: 3. Return call spec
    AgentHost   ->> ExecBroker: 4. Sign & forward request
    ExecBroker  ->> ToolService: 5. API call (JWT/OAuth)
    ToolService -->> ExecBroker: 6. Response payload
    ExecBroker  -->> AgentHost: 7. Enforce policy & return result
    AgentHost   -->> LLM: 8. Feed result back to LLM

How They’ve Evolved in 12 Months

Then (mid‑2024)Now (mid‑2025)
Proof‑of‑concepts in notebooksProduction frameworks (LangGraph, CrewAI, OpenAI Assistants) with state machines
Stateless promptsNative Retrieval‑Augmented Generation (RAG) pipelines & vector stores
Manual JSON glue for APIsStructured function calling built into OpenAI, Anthropic, Mistral
Ad‑hoc hostingDeployed inside SaaS platforms (Salesforce, Microsoft 365, Atlassian) with SSO

The bottom line: agents have graduated from lab toys to business operators—so the security stakes are now board‑level.


Meet MCP — The Universal Connector for Agents

If REST is a set of private driveways, MCP (Model Context Protocol) is the public highway that lets any agent reach any tool without bespoke code.

graph TD
    %% Core reasoning loop
    LLM["LLM (reason & plan)"]
    Hub["Agent Host<br/>(MCP hub)"]
    LLM <--> Hub

    %% Tool “peripherals” plugged in via MCP
    CRM["CRM API"]
    ERP["ERP System"]
    Email["Email Service"]
    Git["GitHub Repo"]
    Payments["Payments Gateway"]

    %% USB-cable–style links
    Hub -- "MCP cable" --> CRM
    Hub -- "MCP cable" --> ERP
    Hub -- "MCP cable" --> Email
    Hub -- "MCP cable" --> Git
    Hub -- "MCP cable" --> Payments

Anatomy of an MCP Transaction

 #ActorWhat HappensKey Security Questions
 1Tool ServicePublishes a Capability Manifest (YAML/JSON) describing each action, parameters, return types, auth scheme.Who reviewed the manifest? Does it over‑expose actions?
 2Agent HostIngests the manifest and converts it to structured function calls visible to the LLM.Are signatures & versions validated?
 3LLMChooses an action, fills parameters, returns a call spec.Is the prompt chain injecting extra params?
 4Execution BrokerSigns request (JWT/OAuth), enforces policy (rate limits, scopes), calls the API.Are both what and why logged?
 5Tool ServiceExecutes, returns result; loop continues until the agent decides it’s done.Is output filtered before it re‑enters the LLM?

Why MCP Took Off

  • Integration fatigue is real — one manifest beats a thousand SDKs.
  • Language‑native — LLMs can reason over plain‑text manifests.
  • Vendor‑neutral — W3C AI Interest Group is shepherding an open standard.

Flip‑side: a single mis‑scoped token or rogue manifest can expose an entire downstream estate.


Capability Expansion — From Changing a Tyre to Selling the Car

Imagine asking a friend who has never fixed a car to change one tyre. That’s today’s simplest agent: single task, narrow scope.

StepNew Capability AddedHow It Maps to Agents
 0Change a tyreBase agent with one tool (replace_tyre)
 1Check oilNew manifest entry gives the agent a measure_oil action
 2Run electrical checksAdd battery_test & alternator_test functions
 3Full diagnostics via another mechanicAgent chains to a second agent specialised in OBD‑II scans (diagnose_engine)
 4Check historic damageIntegrates with an insurance‑database agent (lookup_claims_history)
 5Car valuationConnects to a pricing‑API agent (estimate_value)
 6Replace windscreenBooks a glass‑repair agent (schedule_windscreen)
 7Deep cleanCalls detailing agent (order_detailing)
 8Sell the carHands off to marketplace agent (list_vehicle_for_sale)

Take‑away: Layering capabilities—and linking to other agents—means the same initial prompt (“make my car road‑ready”) can now spawn a full service, valuation, cosmetic upgrade, and marketplace listing. Power scales non‑linearly with each new manifest.Identity 101 — Autonomous vs Delegated Agents

graph LR
    A["Change Tyre<br/>(base agent)"] --> B["Check Oil<br/>(measure_oil)"]
    B --> C["Electrical Checks<br/>(battery & alternator)"]
    C --> D["Engine Diagnostics<br/>(OBD-II agent)"]
    D --> E["Historic Damage Lookup<br/>(insurance DB)"]
    E --> F["Car Valuation<br/>(pricing API)"]
    F --> G["Windscreen Replacement<br/>(glass-repair agent)"]
    G --> H["Deep Clean<br/>(detailing agent)"]
    H --> I["Sell Car<br/>(marketplace agent)"]
AttributeAutonomous IdentityDelegated Identity
Control FlowAgent acts on its own timetableAgent acts on behalf of a named human
Permissions SourceRole granted directly to the agentInherits the delegating user’s rights
AccountabilityAgent owner signs the riskHuman user answers for actions
Typical Use CaseAuto‑ordering suppliesExecutive meeting scheduler
Top RiskOver‑permissioned robotsMis‑attribution of actions

Treat autonomous agents as new non‑human identities; grant least privilege from Day 1.


From Consumer Hype to Enterprise Reality

Consumer‑grade demos show the art of the possible. In business—especially regulated sectors—possible ≠ permissible.

Why it matters

  • Regulations still apply — GDPR, HIPAA, PCI‑DSS and friends aren’t impressed by AI hype.
  • Data mobility is risk mobility — MCP moves data between tools you don’t fully control, expanding the exfiltration blast radius.
  • “Move fast” needs a seatbelt — Document workflows, validate output, and build fallbacks.

Practical guard‑rails

  1. Risk‑first design — Run every new MCP integration through your existing risk framework.
  2. Controlled experimentation — Sandboxes with synthetic/masked data before production.
  3. Granular observability — Log whowhat, and why for each agent action; keep logs immutable and searchable.
  4. Clear accountability — Assign an owner for every agent and its delegated scope.

Blind Spots That Keep CISOs Awake

  1. Identity inversion — by the time a DB query hits Snowflake, the original user context is gone.
  2. Manifest drift — delete_record sneaks into main, and the agent picks it up instantly.
  3. Prompt injection via tool outputs — a poisoned payload steers the agent’s next step.
  4. Token sprawl — revoking secrets turns into whack‑a‑mole.
  5. Opaque cost & performance hotspots — autonomous loops fan out into hundreds of sub‑calls before any dashboard yells.

If you can’t see it, you can’t secure it. Instrument every hop.


Secure MCP Adoption Playbook (8‑Week Sprint Plan)

WeekTrackActionsSuccess Metric
 1DiscoveryInventory all agents, tools, manifests; tag by data sensitivity.100 % assets logged in CMDB
 2Threat ModellingRun STRIDE (or similar) on the top‑3 critical workflows.Risks registered & prioritised
 3Auth HardeningReplace shared keys with OAuth2 client creds + per‑agent JWT claims.Zero hard‑coded secrets in repos
 4Sandbox ValidationReplay high‑risk tasks with synthetic data in a controlled environment.0 PII leaks detected
 5Policy EncodingDeploy policy‑as‑code (OPA, Cedar) to enforce scopes, timeouts, and concurrency limits.All MCP calls pass policy gate
 6ObservabilityShip OpenTelemetry traces to the SIEM; enable latency & anomaly alerts.24×7 dashboard live
 7Kill‑SwitchImplement one‑click disable per agent identity and test the escalation runbook.MTTR < 10 min in red‑team drill
 8Training & GovernanceWorkshops for dev, ops, and compliance; update SDLC gates to include manifest review.80 %+ attendance; SDLC checklist updated

Pro tip: Re‑run the playbook quarterly; the agent ecosystem mutates faster than classic software.


Going All In—Safely

AI agents and MCP are here to stay. They’ll automate drudge work, surface insights, and maybe even surprise us with creativity. But autonomy without oversight is just another word for risk.

  1. Design for least privilege—exactly as you do for service accounts.
  2. Instrument every action—capture identity context and intent.
  3. Iterate controls—as fast as you iterate models.

Do that, and you can ride the AI wave without wiping out.

Leave a Reply

Your email address will not be published. Required fields are marked *